Phytocontent and Biological Effects of Olea europaea L. : A Review
DOI:
https://doi.org/10.32439/ps.v5i2.36-44Keywords:
Olea europaea L., Chemical compounds, Plants, BioactivitiesAbstract
Olive tree (Olea europaea L., Oleaceae) leaves have been widely used in traditional herbal medicine to prevent and treat various diseases especially in Mediterranean countries. They contain several potentially bioactive com-pounds that may have hypoglycemic and hypolipidemic properties. Olea europaea is commonly known as Zaitoon. The ancient Egyptians, Greeks, Romans and other Mediterranean nations cultivated olives for its edible fruits and to obtain oil from them. Leaves of the tree became important when olive leaf extract was reported to be potent in reducing incidence of degenerative diseases, particularly coronary heart disease (CHD) and cancers of the breast, skin, and colon. Olive leaves have the highest antioxidant power among the different parts of the olive tree. While in olive fruit, phenols (e.g.,TYR) and terpenoid hydrocarbon (Squalene) are the major components found in the oil. Much research has been carried out on the medical applications of olive. The choice of the plant was based on the good previous biological study of Olea europaea. Interest to choose this plant, may have been due to the widespread use of olive species medicinally, food industry and cosmetics.
References
Adnan M., R. Bibi, S. Mussarat, A. Tariq, and Z. K. Shinwari, (2014) Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against Escherichia coli, Annals of Clinical Microbiology and Antimicrobials, vol.13, no.1, article40. DOI: https://doi.org/10.1186/s12941-014-0040-6
Al-Azzawie H. F. and M.-S. S. Alhamdani, (2006) Hypoglycemic and antioxidant efect of oleuropein in alloxan-diabetic rabbits, Life Sciences,vol.78,no.12,pp.1371–1377. DOI: https://doi.org/10.1016/j.lfs.2005.07.029
Aouidi F., N. Dupuy, J. Artaud et al., (2012) Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses, Industrial Crops and Products,vol.37,no.1,pp.292–297. DOI: https://doi.org/10.1016/j.indcrop.2011.12.024
Bastoni L., A. Bianco, F. Piccioni, and N. Uccella, (2001) Biophenolic proile in olives by nuclear magnetic resonance, Food Chemistry, vol.73, no.2, pp.145–151. DOI: https://doi.org/10.1016/S0308-8146(00)00250-8
Beauchamp G. K., R.S.J. Keast, D. Moreletal., (2005) Ibuprofen-like activity in extra-virgin olive oil, Nature, vol. 437, no. 7055, pp.45–46. DOI: https://doi.org/10.1038/437045a
Benavente-Garcıa O., J. Castillo, J. Lorente, A. Ortu˜ no, and J. A.Del Rio, (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves, Food Chemistry,vol.68,no.4,pp.457–462. DOI: https://doi.org/10.1016/S0308-8146(99)00221-6
Bendini A., L. Cerretani, A. Carrasco-Pancorbo et al., (2007) Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effect , antioxidant activity and analytical methods. An overview of the last decade, Molecules,vol.12,no.8,pp. 1679–1719. DOI: https://doi.org/10.3390/12081679
Bianchi G. and N. Pozzi, (1994) 3,4-Dihydroxyphenylglycol, a major C6-C2 phenolic in Olea europaea fruits, Phytochemistry, vol.35, no.5,pp.1335–1337. DOI: https://doi.org/10.1016/S0031-9422(00)94849-0
Bianchi G., N. Pozzi, and G.Vlahov, (1994) Pentacyclictriterpene acids in olives, Phytochemistry,vol.37,no.1,pp.205–207. DOI: https://doi.org/10.1016/0031-9422(94)85026-7
Bianco A. and N. Uccella, (2000) Biophenolic components of olives, Food Research International, vol. 33, no. 6, pp. 475–485. DOI: https://doi.org/10.1016/S0963-9969(00)00072-7
Bianco A., C. Melchioni, A. Ramunno, G. Romeo, and N.Uccella, (2004) Phenolic components of Olea europaea—isolation of tyrosol derivatives, Natural Product Research,vol.18,no.1,pp.29–32. DOI: https://doi.org/10.1080/1478641031000111570
Bianco A., F. Buiarelli, G. P. Cartoni, F. Coccioli, R. Jasionowska, and P. Margherita, (2003) Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I, Journal of Separation Science, vol.26, no. 5, pp. 409–416. DOI: https://doi.org/10.1002/jssc.200390053
Bianco A., M. A. Chiacchio, G. Grassi, D. Iannazzo, A. Piperno, and R. Romeo, (2006) Phenolic components ofOlea europea.Isolation of new tyrosol and hydroxytyrosol derivatives, Food Chemistry, vol. 95, no. 4, pp. 562–565. DOI: https://doi.org/10.1016/j.foodchem.2004.12.033
Bianco A., R.A.Mazzei,C.Melchioni,M. L. Scarpati,G. Romeo,and N. Uccella, (1998) Microcomponents of olive oil. Part II. Digalac-tosyldiacylglycerols from Olea europaea, Food Chemistry,vol.62,no.3,pp.343–346. DOI: https://doi.org/10.1016/S0308-8146(97)00192-1
Bianco, A. F. Buiarelli, G.P. Cartoni, F. Coccioli, R. Jasionowska, and P. Margherita, (2003) Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in virgin olive oil, Part II, JournalofSeparationScience,vol.26,no.5,pp.417–424. DOI: https://doi.org/10.1002/jssc.200390054
Campeol, E. G. Flamini, P. L. Cioni, I. Morelli, F. D’Andrea, and R. Cremonini, (2004) 1,5-Anhydroxylitol from leaves of Olea europaea, Carbohydrate Research,vol.339,no.16,pp.2731–2732. DOI: https://doi.org/10.1016/j.carres.2004.09.001
Cardoso S. M., S. I. Falc˜ ao, A. M. Peres, and M. R. M.Domingues, (2011) Oleuropein/ligstroside isomers and their derivatives in Portuguese olivemill waste waters, Food Chemistry,vol.129, no. 2, pp. 291–296. DOI: https://doi.org/10.1016/j.foodchem.2011.04.049
Casaburi I., F. Puoci, A. Chimento et al., (2013) Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies, Molecular Nutrition & Food Research,vol.57,no.1,pp.71–83. DOI: https://doi.org/10.1002/mnfr.201200503
Charoenprasert S. and A. Mitchell, (2012) Factors influencing phenolic compounds in table olives (Olea europaea), Journal of Agricultural and Food Chemistry,vol.60,no.29,pp.7081–7095. DOI: https://doi.org/10.1021/jf3017699
Circosta C., F. Occhiuto, A. Gregorio, S. Toigo, and A. de Pasquale, (1990) he cardiovascular activity of the shoots and leaves of Olea europaea L. and oleuropein, Plantes Medicinales et Phytotherapie,vol.24,no.4,pp.264–277. DOI: https://doi.org/10.1002/ptr.2650040403
Crisosto, C., L. Ferguson and G. Nanos (2011). Olive (Olea europaea L.). Postharvest Biology and Technology of Tropical and Subtropical Fruits, Elsevier: 63-87e. DOI: https://doi.org/10.1533/9780857092618.63
Dekanski D., S. Janicijevi´ c-Hudomal, V. Tadi´ c, G. Markovi´ c, I. Arsi´ c, and D. M. Mitrovi´ c, (2009) Phytochemical analysis and gastroprotective activity of an olive leaf extract, Journal of the Serbian Chemical Society, vol.74,no.4,pp.367–377. DOI: https://doi.org/10.2298/JSC0904367D
Duquesnoy E., V. Castola, and J. Casanova, (2007) Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13 C-NMR spectroscopy, Phytochemical Analysis, vol.18,no.4,pp.347–353. DOI: https://doi.org/10.1002/pca.989
Eidi A., S. Moghadam-Kia, J. Z. Moghadam, M. Eidi, and S. Rezazadeh, (2012) Antinociceptive and anti-inlammatory effect of olive oil (Olea europeae L.) inmice, Pharmaceutical Biology,vol. 50, no. 3, pp. 332–337. DOI: https://doi.org/10.3109/13880209.2011.600318
El-Abd-Elhaim S. N. and S. Karakaya, (2009) Olive tree (Olea europaea) leaves: potential beneicial effect on human health, Nutrition Reviews,vol. 67, no. 11, pp. 632–638. DOI: https://doi.org/10.1111/j.1753-4887.2009.00248.x
Erbay Z. and F. Icier, (2010) he importance and potential uses of olive leaves, Food Reviews International, vol. 26, no. 4, pp. 319–334. DOI: https://doi.org/10.1080/87559129.2010.496021
Esmaeili-Mahani S., M. Rezaeezadeh-Roukerd, K. Esmaeilpour et al., (2010) Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats, Journal of Ethnopharmacology, vol. 132, no. 1, pp. 200–205. DOI: https://doi.org/10.1016/j.jep.2010.08.013
Esti, M. L. Cinquanta, and E. La Notte, (1998) Phenolic compounds in different olive varieties, Journal of Agricultural and Food Chemistry, vol. 46, no. 1, pp. 32–35. DOI: https://doi.org/10.1021/jf970391+
Fehri B., J.-M. Aiache, S. Mrad, S. Korbi, and J.-L. Lamaison, (1996) Olea europaea L.: stimulant, anti-ulcer and anti-inlammatory effects, Bollettino Chimico Farmaceutico,vol.135,no.1,pp.42–49.
Fogliano V., A. Ritieni, S. M. Monti et al., (1999) Antioxidant activity of virgin olive oil phenolic compounds in a micellar system, Journal of the Science of Food and Agriculture, vol.79, no.13,pp.1803–1808. DOI: https://doi.org/10.1002/(SICI)1097-0010(199910)79:13<1803::AID-JSFA439>3.0.CO;2-B
Galanakis C. M., (2011) Olive fruit dietary iber: components, recovery and applications, Trends in Food Science & Technology,vol. 22,no.4,pp.175–184. DOI: https://doi.org/10.1016/j.tifs.2010.12.006
Gariboldi P., G. Jommi, and L. Verotta, (1986) Secoiridoids from Olea europaea, Phytochemistry, vol. 25, no. 4, pp. 865–869. DOI: https://doi.org/10.1016/0031-9422(86)80018-8
Gentile L. and N. A. Uccella, (2014) Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS, Food Research International,vol.55,pp.128–136. DOI: https://doi.org/10.1016/j.foodres.2013.10.046
Ghisalberti, E. L. (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids, Phytomedicine, vol. 5, no. 2, pp. 147–163. DOI: https://doi.org/10.1016/S0944-7113(98)80012-3
Goulas V., V. Exarchou, A. N. Troganis et al., (2009) Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells, Molecular Nutrition and Food Research, vol. 53, no. 5, pp. 600–608. DOI: https://doi.org/10.1002/mnfr.200800204
Guan T., Y.-S. Qian, M.-H. Huang, (2010) Neuroprotection of maslinic acid, a novel glycogen phosphorylase inhibitor, in type 2 diabeticrats, Chinese Journal of Natural Medicines, vol.8,no. 4, pp. 293–297. DOI: https://doi.org/10.1016/S1875-5364(10)60037-4
Guinda A., A.Lanz´ on,J.J.Rios,andT.Albi, (2002) heisolation and quantiication of the components from olive leaf: hexane extract, Grasas y Aceites,vol.53,no.4,pp.419–422. DOI: https://doi.org/10.3989/gya.2002.v53.i4.340
Haloui E., B. Marzouk, Z. Marzouk, A. Bouraoui, and N. Fenina, (2011) Hydroxytyrosol and oleuropein from olive leaves: potent anti-inlammatory and analgesic activities, Journal of Food, Agriculture & Environment,vol.9,no.3-4,pp.128–133.
Hansen K., A. Adsersen, S. B. Christensen, S. R. Jensen, U. Nyman, and U.W. Smitt, (1996) Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea, Phytomedicine,vol.2,no.4,pp.319–325. DOI: https://doi.org/10.1016/S0944-7113(96)80076-6
Homer K.A.,F.Manji,and D. Beighton, (2009) Inhibition of peptidase and glycosidase activities of Porphyromonas gingivalis, Bacteroides intermedius and Treponema denticola by plant extracts, Journal of Clinical Periodontology,vol.19,no.5,pp.305–310,1992.Houston, Tex, USA. DOI: https://doi.org/10.1111/j.1600-051X.1992.tb00649.x
Iriti, M. S. Vitalini, G. Fico, and F. Faoro, (2010)Neuroprotective herbs and foods from different traditional medicines and diets, Molecules, vol.15,no.5,pp.3517–3555. DOI: https://doi.org/10.3390/molecules15053517
Jerman, T. P. Trebˇ se, and B.M. Vodopivec, (2010) Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds, Food Chemistry, vol.123, no.1,pp.175–182. DOI: https://doi.org/10.1016/j.foodchem.2010.04.006
Juan M. E., U. Wenzel, H. Daniel, and J. M. Planas, (2008) Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells, Molecular Nutrition and Food Research, vol.52,no.5,pp.595–599. DOI: https://doi.org/10.1002/mnfr.200700300
Kalua C. M., M. S. Allen, D. R. Bedgood Jr., A. G. Bishop, P. D. Prenzler, and K. Robards, (2007) Olive oil volatile compounds, lavour development and quality: a critical review, Food Chemistry,vol. 100, no. 1, pp. 273–286, DOI: https://doi.org/10.1016/j.foodchem.2005.09.059
Kanakis, P. A. Termentzi, T. Michel, E. Gikas, M. Halabalaki, and A.-L. Skaltsounis, (2013) From olive drupes to olive Oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive keymetabolites, PlantaMedica, vol. 79,no.16,pp.1576–1587. DOI: https://doi.org/10.1055/s-0033-1350823
Kang H. and S. Koppula, (2014) Olea europaea linn. Fruit pulp extract protects against carbon tetrachloride-induced hepatic damage in mice, Indian Journal of Pharmaceutical Sciences, vol.76,no.4, pp. 274–280.
Karioti A., A. Chatzopoulou, A. R. Bilia, G. Liakopoulos, S. Stavrianakou, and H. Skaltsa, (2006) Novel secoiridoid glucosides in Olea europaea leaves sufering from boron deiciency, Bio-science, Biotechnology and Biochemistry, vol.70,no.8,pp.1898–1903. DOI: https://doi.org/10.1271/bbb.60059
Komaki E., S. Yamaguchi, I. Maru et al., (2003) Identiication of anti-amylase components from olive leaf extracts, Food Science and Technology Research,vol.9,no.1,pp.35–39. DOI: https://doi.org/10.3136/fstr.9.35
Kubo A., C. S. Lunde, and I. Kubo, (1995) Antimicrobial activity of the olive oil lavor compounds, Journal of Agriculturaland Food Chemistry, vol.43,no.6,pp.1629–1633. DOI: https://doi.org/10.1021/jf00054a040
Kubo I. and I. Kinst-Hori, (1999) Tyrosinase inhibitory activity of the olive oil lavor compounds, Journal of Agricultural and Food Chemistry, vol.47,no.11,pp.4574–4578. DOI: https://doi.org/10.1021/jf990165v
Kuwajima H., T. Uemura, K. Takaishi, K. Inoue, and H. Inouyet, (1988) A secoiridoid glucoside from Olea europaea, Phytochemistry,vol. 27, no. 6, pp. 1757–1759. DOI: https://doi.org/10.1016/0031-9422(88)80438-2
Le Tutour B. and D. Guedon, (1992) Antioxidative activities of Olea europaea leaves and related phenolic compounds, Phytochemistry, vol.31,no.4,pp.1173–1178. DOI: https://doi.org/10.1016/0031-9422(92)80255-D
Luibl E., (1958) Leaves of the olive tree in hypertension, Medizinische Monatsschritf¨ ur Pharmazeuten, vol.12, pp.181–182.
Maestroduran R., R. Leoncabello, V. Ruizgutierrez, P. Fiestas, and A. Vazquezroncero, (1994) Bitter phenolic glucosides from seeds of olive (Olea europaea), Grasas y Aceites,vol.45,no.5,pp.332–335. DOI: https://doi.org/10.3989/gya.1994.v45.i5.1028
Marra C. and M. E. Giordano, (2005) A new diacylglycerol from fresh olive pulp, Natural Product Research,vol.19,no.1,pp.81–85. DOI: https://doi.org/10.1080/14786410410001686382
Movsumov I. S. and A. M. Aliev, (1985) Oleanolic and maslinic acids of the fruit of Olea europaea, Chemistry of Natural Compounds, vol.21,no.1,pp.125–126. DOI: https://doi.org/10.1007/BF00574276
Movsumov, I. S. (1994) Components of the leaves of Olea verrucosa, Chemistry of Natural Compounds, vol.30, no.5,p.626. DOI: https://doi.org/10.1007/BF00629879
Mussini, P. F. Orsini, and F. Pelizzoni, (1975) Triterpenes in leaves of Olea europaea, Phytochemistry, vol.14, no.4,p.1135. DOI: https://doi.org/10.1016/0031-9422(75)85210-1
Nenadis N. and M. Z. Tsimidou, (2000) Oleuropein and related secoiridoids. Antioxidant activity and sources other than Olea europaea L. (olive tree), in Recent Progress in Medicinal Plants, Chemistry and Medicinal Value, pp. 53–74, Studium Press LLC,
Nieto F. R., E. J. Cobos, J. M. Entrena, A. Parra, A. Garcıa- Granados, and J. M. Baeyens, (2013) Antiallodynic and analgesic effect of maslinic acid, a pentacyclic triterpenoid from Olea europaea, Journal of Natural Products, vol.76,no.4,pp.737–740. DOI: https://doi.org/10.1021/np300783a
Obied, H. K. (2013) Biography of biophenols: past, present and future, Functional Foods in Health and Disease, vol.3,no.6,pp. 230–241. DOI: https://doi.org/10.31989/ffhd.v3i6.51
Obied, H. K. M. S. Allen, D. R. Bedgood, P. D. Prenzler, K. Robards, and R. Stockmann, (2005) Bioactivity and analysis of biophenols recovered fromolivemill waste, Journal of Agricultural and Food Chemistry, vol.53,no.4,pp.823–837. DOI: https://doi.org/10.1021/jf048569x
Omar, S. H. (2010) Oleuropein in olive and its pharmacological effects, Scientia Pharmaceutica, vol.78 ,no.2,pp.133–154. DOI: https://doi.org/10.3797/scipharm.0912-18
Owen, R. W. R. Haubner, W. Mier et al., (2003) Isolation, structure elucidation and antioxidant potential of the major phenolic and lavonoid compounds in brined olive drupes, Food and Chemical Toxicology, vol.41, no.5,pp.703–717. DOI: https://doi.org/10.1016/S0278-6915(03)00011-5
Paiva-Martins F. and M. H. Gordon, (2001) Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate fromolive (Olea europaea) leaves, Journal of Agricultural and Food Chemistry, vol.49,no.9,pp.4214–4219. DOI: https://doi.org/10.1021/jf010373z
Paiva-Martins F., V. Rodrigues, R. Calheiros, and M. P. M. Marques, (2011) Characterization of antioxidant olive oil biophenols by spectroscopic methods, Journal of the Science of Food and Agriculture, vol. 91, no. 2, pp. 309–314. DOI: https://doi.org/10.1002/jsfa.4186
Peralbo-Molina A., F. Priego-Capote, and M. D. L. de Castro, (2012) Tentative identiication of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole-quadrupole-time-of-light mass detector, Journal of Agricultural and Food Chemistry, vol.60, no. 46, pp. 11542–11550. DOI: https://doi.org/10.1021/jf302896m
Pereira, A. P. I. C. F. R. Ferreira, F. Marcelino et al., (2007) Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv.Cobranc ¸osa) leaves, Molecules, vol. 12, no. 5, pp. 1153-1162. DOI: https://doi.org/10.3390/12051153
Perez-Bonilla M., S. Salido, T. A. van Beek et al., (2006) Isolation and identiication of radical scavengers in olive tree (Olea europaea) wood, Journal of Chromatography A, vol. 1112, no. 1-2, pp. 311–318. DOI: https://doi.org/10.1016/j.chroma.2005.12.055
Procopio, A. S. Alcaro, M. Nardietal., (2009) Synthesis,biological evaluation, and molecular modeling of oleuropein and its sem- isynthetic derivatives as cyclooxygenase inhibitors, Journal of Agricultural and Food Chemistry,vol.57,no.23,pp.11161–11167. DOI: https://doi.org/10.1021/jf9033305
Rodrıguez G., A. Lama, S. Jaramilloetal., (2009) 3,4-Dihydroxy-phenylglycol (DHPG): an important phenolic compound present in natural table olives, Journal of Agricultural and Food Chemistry,vol.57,no.14,pp.6298–6304. DOI: https://doi.org/10.1021/jf803512r
Romero, C. A. Garc´ ıa, E. Medina, M. V. Ru´ ız-M´ endez, A. de Castro, and M. Brenes, (2010) Triterpenic acids in table olives, Food Chemistry,vol.118,no.3,pp.670–674. DOI: https://doi.org/10.1016/j.foodchem.2009.05.037
Ryan D. and K. Robards, (1998) Phenolic compounds in olives, Analyst, vol.123, no.5,pp.31R–44R. DOI: https://doi.org/10.1039/a708920a
Ryan D., K. Robards, P. Prenzler, D. Jardine, T. Herlt, and M. Antolovich, (1999) Liquid chromatography with electrospray ionisationmass spectrometric detection of phenolic compounds from Olea europaea, Journal of Chromatography A, vol. 855, no. 2, pp.529–537. DOI: https://doi.org/10.1016/S0021-9673(99)00719-0
Saija A. and N. Uccella, (2000) Olive biophenols: functional effect on human wellbeing, Trends in Food Science and Technology,vol.11, no. 9-10, pp. 357–363. DOI: https://doi.org/10.1016/S0924-2244(00)00068-6
Sakouhi F., C. Absalon, H. Kallel, and S. Boukhchina, (2010) Com-parative analysis of triacylglycerols fromOlea europaea L. fruits using HPLC and MALDI-TOFMS, European Journal of Lipid Science and Technology, vol.112, no.5,pp.574–579. DOI: https://doi.org/10.1002/ejlt.200900079
Savarese M., E. de Marco, and R. Sacchi, (2007) Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry, Food Chemistry, vol.105, no.2,pp.761–770. DOI: https://doi.org/10.1016/j.foodchem.2007.01.037
Savournin C., B. Baghdikian, R. Elias, F. Dargouth-Kesraoui, K. Boukef, and G. Balansard, (2001) Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves, Journal of Agricultural and Food Chemistry, vol.49,no.2,pp.618–621. DOI: https://doi.org/10.1021/jf000596+
Scalzo R. lo and M. L. Scarpati, (1993) A new secoiridoid from olive waste waters, Journal of Natural Products, vol.56,no.4,pp.621–623. DOI: https://doi.org/10.1021/np50094a026
Schumacher, B. S. Scholle, J. H¨ olzl, N. Khudeir, S. Hess, and C.E. Muller, (2002) Lignans isolated from Valer ian: identiication and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors, Journal of Natural Products, vol.65, no.10, pp.1479–1485. DOI: https://doi.org/10.1021/np010464q
Servili M., M. Baldioli, R. Selvaggini, A. Macchioni, and G. Montedoro, (1999) Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit, Journal of Agricultural and Food Chemistry,vol.47,no.1,pp.12–18. DOI: https://doi.org/10.1021/jf9806210
Sibbett, G. S. L. Ferguson, and M. Lindstrand, (2005) Olive Production Manual, University of California, Department of Agriculture and Natural Resources.
Soler-Rivas C., J. C. Espin, and H. J. Wichers, (2000) Oleuropein and related compounds, Journal of the Science of Food and Agriculture, vol.80,no.7,pp.1013–1023. DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1013::AID-JSFA571>3.0.CO;2-C
Somova L. I., F. O. Shode, and M. Mipando, (2004) Cardiotonic and antidysrhythmic effect of oleanolic and ursolic acids, methyl maslinate and uvaol, Phytomedicine, vol. 11, no. 2-3, pp. 121–129. DOI: https://doi.org/10.1078/0944-7113-00329
Speroni, E. M. C. Guerra, A. Minghetti et al., (1998) Oleuropein evaluated in vitro and in vivo as an antioxidant, Phytotherapy Research, vol. 12, pp. S98–S100. DOI: https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+<S98::AID-PTR263>3.0.CO;2-M
Sultana N. and A. Ata, (2008) Oleanolic acid and related derivatives as medicinally important compounds, Journal of Enzyme Inhibition and Medicinal Chemistry,vol.23,no.6,pp.739–756. DOI: https://doi.org/10.1080/14756360701633187
Susalit E., N. Agus, I. Efendi et al., (2011) Olive (Olea europaea) leaf extract efective in patients with stage-1 hypertension: comparison with Captopril, Phytomedicine, vol.18, no.4, pp.251–258. DOI: https://doi.org/10.1016/j.phymed.2010.08.016
Trichopoulou A., P. Lagiou, H. Kuper, and D. Trichopoulos. (2000) Cancer and Mediterranean dietary traditions, Cancer Epidemiology Biomarkers and Prevention, vol.9, no.9, pp.869–873.
Tsukamoto H., S. Hisada, and S. Nishibe, (1985) Coumarin and secoiridoid glucosides from bark of Olea africana and Olea capensis, Chemical & Pharmaceutical Bulletin, vol. 33, no. 1, pp. 396–399. DOI: https://doi.org/10.1248/cpb.33.396
Tsukamoto H., S. Hisada, S. Nishibe, and D. G. Roux, (1984) Phenolic glucosides from Olea europaea subs. africana, Phytochemistry, vol. 23, no. 12, pp. 2839–2841. DOI: https://doi.org/10.1016/0031-9422(84)83025-3
Tsukamoto, H. S. Hisada, and S. Nishibe, (1984) Lignans frombark of the Olea plants. I, Chemical and Pharmaceutical Bulletin,vol. 32, no. 7, pp. 2730–2735. DOI: https://doi.org/10.1248/cpb.32.2730
Vecchia C. and C. Bosetti, (2007) Diet and cancer risk in Mediterranean countries, Hungarian Medical Journal, vol.1,no.1,pp.13–23. DOI: https://doi.org/10.1556/HMJ.1.2007.1.3
Vlahov G., C. Schiavone, andN. Simone, (1999) Triacylglycerols of theolive fruit (Olea europaea L.): characterization of mesocarp and seed triacylglycerols in different cultivars by liquid chromatography and13C NMR spectroscopy, Fett-Lipid, vol.101,no.4,pp.146–150. DOI: https://doi.org/10.1002/(SICI)1521-4133(199904)101:4<146::AID-LIPI146>3.0.CO;2-3
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.