Biological Evidences of Dicoumarol: A Review
DOI:
https://doi.org/10.32439/ps.v4i2.121-124Keywords:
Dicoumarol, Chemical compounds, PlantsAbstract
Dicoumarol, a natural anticoagulant drug chemically designated as is metabolized from Coumarin in the sweet clover (Melilotus alba and Melilotus officinalis) by molds, such as Penicillium nigricans and Penicillium jensi. Coumarin (1,2-benzopyrone), the parent molecule of Dicoumarol, is the simplest compound of a large class of naturally occurring phenolic substances made of fused Benzene and Pyrone rings . In addition, the Coumarin anticoagulants, Dicoumarol (Dicumarol) and its synthetic derivative Warfarin sodium (Coumadin), have been shown to decrease metastases in experimental animals. Warfarin sodium, largely replacing Dicoumarol therapeutically as an anticoagulant, has been used for the treatment of a variety of cancers and shown to improve tumor response rates and survival in patients with several types of cancer. However, despite numerous studies, little information has been acquired on the cellular mechanism of action of Coumarin compounds in the treatment of malignancies. Possibly for this reason, the Coumarin compounds have not received much attention for the treatment of cancer.
References
Aras D., O. Cinar, Z. Cakar, S. Ozkavukcu, A. Can, (2015). Can dicoumarol be used as a gonad-safe anticancer agent: an in vitro and in vivo experimental study, Mol. Hum. Reprod. 22 (1) 57–67. https://doi.org/10.1093/molehr/gav065 DOI: https://doi.org/10.1093/molehr/gav065
Armour CJ, Barnett SA. (1950). The action of dicoumarol on laboratory and wild rats, and its effect on feeding behaviour. Epidemiology & Infection 48: 158-170. https://doi.org/10.1017/s0022172400014984 DOI: https://doi.org/10.1017/S0022172400014984
Bello R.I., C. Gomez-Diaz, G. Lopez-Lluch, N. Forthoffer, M.C. Cordoba-Pedregosa, P. Navas, J.M. Villalba, (2005). Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism, Biochem. Pharmacol. 69 (11) 1613–1625. https://doi.org/10.1016/j.bcp.2005.03.012 DOI: https://doi.org/10.1016/j.bcp.2005.03.012
Campbell HA, Link KP. (1941). Studies on the hemorrhagic sweet clover disease: IV. The isolation and crystallization of the hemorrhagic agent. Journal of Biological Chemistry PP 138: 21-33. https://doi.org/10.1016/s0021-9258(18)51407-1 DOI: https://doi.org/10.1016/S0021-9258(18)51407-1
Castedal M., F. Aldenborg, R. Olsson, (1998). Fulminant hepatic failure associated with dicoumarol therapy, Liver 18 (1) 67–69. https://doi.org/10.1111/j.1600-0676.1998.tb00129.x DOI: https://doi.org/10.1111/j.1600-0676.1998.tb00129.x
Cullen J.J., M.M. Hinkhouse, M. Grady, A.W. Gaut, J. Liu, Y.P. Zhang, C.J. Darby Weydert, F.E. Domann, L.W. Oberley, (2003). Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism, Cancer Res. 63 (17) 5513. https://doi.org/10.1016/s0016-5085(03)81462-2 DOI: https://doi.org/10.1016/S0016-5085(03)81462-2
Dholariya H.R., K.S. Patel, J.C. Patel, K.D. Patel, (2013). Dicoumarol complexes of Cu(II) based on 1,10-phenanthroline: synthesis, X-ray diffraction studies, thermal behavior and biological evaluation, Spectrochim. Acta A Mol. Biomol. Spectrosc. 108 319–328. https://doi.org/10.1016/j.saa.2012.09.096 DOI: https://doi.org/10.1016/j.saa.2012.09.096
Diaz-Veliz G., S. Mora, H. Lungenstrass, J. Segura-Aguilar, (2004). Inhibition of DT- diaphorase potentiates the in vivo neurotoxic effect of intranigral injection of salsolinol in rats, Neurotox. Res. 5 (8) 629–633. https://doi.org/10.1007/bf03033183 DOI: https://doi.org/10.1007/BF03033183
Du J., D.H. Daniels, C. Asbury, S. Venkataraman, J. Liu, D.R. Spitz, L.W. Oberley, J. J. Cullen, (2006). Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells, J. Biol. Chem. 281 (49) 37416–37426. https://doi.org/10.1074/jbc.m605063200 DOI: https://doi.org/10.1074/jbc.M605063200
Forthoffer N., C. Gomez-Diaz, R.I. Bello, M.I. Buron, S.F. Martin, J.C. Rodriguez- Aguilera, P. Navas, J.M. Villalba, (2002). A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells, J. Bioenerg. Biomembr. 34 (3) 209–219. https://doi.org/10.1023/a:1016035504049 DOI: https://doi.org/10.1002/biof.5520180224
Gomez-Outes A, Suarez-Gea ML, Calvo-Rojas G, Lecumberri R, Rocha E, Pozo-Hernandez C, Terleira-Fernandez AI, Vargas-Castrillon E.(2012). Discovery of anticoagulant drugs: a historical perspective. Curr Drug Discov Technol 9: 83-104. https://doi.org/10.2174/1570163811209020083 DOI: https://doi.org/10.2174/1570163811209020083
Greisman H, Marcus RM.(1948). Acute myocardial infarction; detailed study of dicumarol therapy in 75 consecutive cases. Am Heart J36: 600-609. https://doi.org/10.1016/0002-8703(48)90694-2 DOI: https://doi.org/10.1016/0002-8703(48)90694-2
Hou J. Li, Z., G.H. Chen, F. Li, Y. Zhou, X.Y. Xue, Z.P. Li, M. Jia, Z.D. Zhang, M. K. Li, X.X. Luo, (2014). Synthesis, antibacterial activities, and theoretical studies of dicoumarols, Org. Biomol. Chem. 12 (29) 5528–5535. https://doi.org/10.1039/c4ob00772g DOI: https://doi.org/10.1039/C4OB00772G
Johansson E., G.N. Parkinson, W.A. Denny, S. Neidle, (2003). Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form, J. Med. Chem. 46 (19) 4009–4020. https://doi.org/10.2210/pdb1oo5/pdb DOI: https://doi.org/10.1021/jm030843b
Keeling D, Baglin T, Tait C, Watson H, Perry D, Baglin C, Kitchen S, Makris M, (2011). British Committee for Standards in Haematology. Guidelines on oral anticoagulation with warfarin - fourth edition. Br J Haematol; 154: 311-324. https://doi.org/10.1111/j.1365-2141.2011.08753.x DOI: https://doi.org/10.1111/j.1365-2141.2011.08753.x
Lewis A., M. Ough, L. Li, M.M. Hinkhouse, J.M. Ritchie, D.R. Spitz, J.J. Cullen, (2004). Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress, Clin. Cancer Res. 10 (13) 4550. https://doi.org/10.1158/1078-0432.ccr-03-0667 DOI: https://doi.org/10.1158/1078-0432.CCR-03-0667
Link KP. (1959). The Discovery of Dicumarol and Its Sequels. Circulation 19: 97-107 https://doi.org/10.1161/01.cir.19.1.97 DOI: https://doi.org/10.1161/01.CIR.19.1.97
Munoz P., S. Huenchuguala, I. Paris, C. Cuevas, M. Villa, P. Caviedes, J. Segura- Aguilar, Y. Tizabi, (2012). Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: implications for Parkinson’s disease, Neurotox. Res. 22 (2) 177–180. https://doi.org/10.1007/s12640-012-9326-7 DOI: https://doi.org/10.1007/s12640-012-9326-7
Murray RDH, Mendez J, Brown SA.(1982). The natural coumarins occurrence. In Chemistry and Biochemistry. Chichester, UK: John Wiley and Sons.
Murray RDH. (1997). Naturally occurring plant coumarins. Progress in the Chemistry of Or‐ganic Natural Products.72:1-119. DOI: https://doi.org/10.1007/978-3-7091-6527-0_1
Norn S., H. Permin, E. Kruse, P.R. Kruse, (2014). On the history of vitamin K, dicoumarol and warfarin, Dan. Medicinhist. Arbog 42;99–119.
Rehman S., M. Ikram, A. Khan, S. Min, E. Azad, T.S. Hofer, K. Mok, R.J. Baker, A. J. Blake, S.U. Rehman, (2013). New dicoumarol sodium compound: crystal structure, theoretical study and tumoricidal activity against osteoblast cancer cells, Chem. Cent. J. 7 (1) 110. https://doi.org/10.1186/1752-153x-7-110 DOI: https://doi.org/10.1186/1752-153X-7-110
Tadros R, Shakib S. (2010). Warfarin--indications, risks and drug interactions. Aust Fam Physician 39: 476-479.
Tian Z., Q. Yan, L. Feng, S. Deng, C. Wang, J. Cui, C. Wang, Z. Zhang, T.D. James, X. Ma, (2019). A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin, Chem. Commun. (Camb.) 55 (27) 3951–3954. https://doi.org/10.1039/c9cc01579e DOI: https://doi.org/10.1039/C9CC01579E
Van Dam K, Slater EC. (2015-2019). A suggested mechanism of uncoupling of respiratory-chain phosphorylation. Proc Natl Acad Sci U S A 1967; 58. https://doi.org/10.1073/pnas.58.5.2015 DOI: https://doi.org/10.1073/pnas.58.5.2015
Wallin R., N. Wajih, S.M. Hutson, (2008) VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors, Vitam. Horm. 78; 227–246. https://doi.org/10.1016/s0083-6729(07)00011-8 DOI: https://doi.org/10.1016/S0083-6729(07)00011-8
Woods J.A., A.J. Young, I.T. Gilmore, A. Morris, R.F. Bilton, (1997). Measurement of menadione-mediated DNA damage in human lymphocytes using the comet assay, Free Radic. Res. 26 (2) 113–124. https://doi.org/10.3109/10715769709097790 DOI: https://doi.org/10.3109/10715769709097790
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Khaled Rashed
This work is licensed under a Creative Commons Attribution 4.0 International License.