Phenotypic diversity of Haitian Benzolive (Moringa oleifera Lam.)

Authors

  • Aristil Junior
  • Pierre Jonas Sanon
  • Dominique Lordé

DOI:

https://doi.org/10.32439/ps.v3i1.1-6

Keywords:

Moringa, Morphological Diversity, Haiti

Abstract

Moringa (MO) is a plant with great nutritional value distributed in almost all subtropical and tropical countries including Haiti.  MO is relatively present in all departments of Haiti. But till now, there are no data available for the phenotypical diversities of Haitian MO. The current survey is aimed at evaluating the morphological diversity of Haitian MO. From June to September of the 2018 year, 90 samples of MO were collected in the 10 departments of Haiti. Characters registered per plant were submitted to statistical analysis using IBM SPSS, version 22.0. Results revealed that Haitian MO grain yield (GY) were ranging from 0.20 to 3.26 t/ha. MO from Grand’Anse and South are significantly more yielded than the other districts (p< 0.05).  MO grain yield was positively related to all registered characters. The two maximal GY correlations were observed mainly with the number of branches plant (ρ =0.74; p<0.001) and the number of pods per branch (ρ =0.60; p<0.001).  Haitian MO was classified into two separate clusters. MO of South, Southeast and Grand’Anse departments formed one cluster and the other departments constituted the largest one.  The greatest genetic diversity was detected in MO from Southeast and West departments. Crossing materials from Southeast and West department is well recommended for creating possibly new accessions. The additional investigation regarding molecular classification is deeply required for better understanding of the genetic diversity of Haitian MO.

References

Ali E.N., Muyibi S.A., Salleh H.M., Alam M.Z. and Salleh M.R.M. (2010). Production of natural coagulant from Moringa oleifera seed for application in treatment of low turbidity water, Journal of Water Resource and Protection., 2(03): 259.https://doi.org/10.4236/jwarp.2010.23030 DOI: https://doi.org/10.4236/jwarp.2010.23030

Allam A., Tirichine A., Madani H. and Benlamoudi W. (2018). Variabilité morphologique du sorgho (Sorghum bicolor L. Moench), cultivé dans la vallée d’Oued Righ (Sud-est Algerien). Lebanese Science Journal, 19(1): 10.https://doi.org/10.12816/0045856 DOI: https://doi.org/10.12816/0045856

Anwar F., Latif S., Ashraf M. and Gilani A.H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives.,21(1): 17-25. https://doi.org/10.1002/ptr.2023 DOI: https://doi.org/10.1002/ptr.2023

Anwar F., Zafar S.N. and Rashid U. (2006). Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. GrasasAceites, 57(2): 160-168. https://doi.org/10.3989/gya.2006.v57.i2.32 DOI: https://doi.org/10.3989/gya.2006.v57.i2.32

Aristil J. (2018). Integrated approaches to agriculture in developing country: Haiti. PhD thesis, University of Milan, Milan, p 174. https://doi.org/10.4314/ijbcs.v13i2.12

Aristil J. (2019).Effets de trois types de fertilisants sur les paramètresvégétatifs et productifs du sorghoenHaïti. Int. J. Biol. Chem. Sci.,13(2): 720-726. DOI: https://dx.doi.org/10.4314/ijbcs.v13i2.12 DOI: https://doi.org/10.4314/ijbcs.v13i2.12

Aristil J., Venturini G. and Spada, A. (2017). Occurrence of Toxigenic Fungi and Aflatoxin Potential of Aspergillus spp. Strains Associated with Subsistence Farmed Crops in Haiti. J Food Protect, 80(4) : 626-631. https://doi.org/10.4315/0362-028x.jfp-16-278 DOI: https://doi.org/10.4315/0362-028X.JFP-16-278

Aristil J., Venturini G., Maddalena G., Toffolatti S. L. and Spada A. (2020). Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. J Stored Prod Res., 85: 101550. https://doi.org/10.1016/j.jspr.2019.101550 DOI: https://doi.org/10.1016/j.jspr.2019.101550

Ayerza R. (2011). Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) growing in the Arid Chaco of Argentina. Ind Crop Prod., 33(2): 389-394. https://doi.org/10.1016/j.indcrop.2010.11.003 DOI: https://doi.org/10.1016/j.indcrop.2010.11.003

Boucher J. (2006). Oleaginous plant seeds and seed by-products for water treatment. Chemical Engineering. Lausanne, École Polytechnique Fédérale de Lausanne (EPFL). PhD, 247. https://doi.org/10.24295/cpsstpea.2019.00017 DOI: https://doi.org/10.24295/CPSSTPEA.2019.00017

Chumark P., Khunawat P., Sanvarinda Y., Phornchirasilp S., Morales N. P., Phivthong-ngam L. and Klai-upsorn S.P. (2008). The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol., 116(3): 439-446. https://doi.org/10.1016/j.jep.2007.12.010 DOI: https://doi.org/10.1016/j.jep.2007.12.010

Corp IBM. (2013). IBM SPSS statistics for windows, version 22.0. Armonk, NY: IBM Corp.

Crossa J. and Franco J. (2004). Statistical methods for classifying genotypes. Euphytica137(1): 19-37. https://doi.org/10.1023/b:euph.0000040500.86428.e8 DOI: https://doi.org/10.1023/B:EUPH.0000040500.86428.e8

Dabre A., Hien E., Some D. and Drevon J.J. (2016).Impacts des pratiques culturales sur la production du sorgho (Sorghum bicolor L.) et du niébé (Vignaunguiculata (L.) Walp.) et sur le bilan partiel de l’azote sous niébé au Burkina Faso. Int. J. Biol. Chem. Sci.., 10(5): 2215-2230.https://doi.org/10.4314/ijbcs.v10i5.22 DOI: https://doi.org/10.4314/ijbcs.v10i5.22

Dahiru D., Onubiyi J.A. and Umaru H.A. (2006). Phytochemical screening and antiulcerogenic effect of Moringa oleifera aqueous leaf extract. Afr J TraditComplem., 3(3): 70-75. https://doi.org/10.4314/ajtcam.v3i3.31167 DOI: https://doi.org/10.4314/ajtcam.v3i3.31167

De Paula H. M., de Oliveira Ilha M.S., Sarmento A.P. and Andrade L.S. (2018). Dosage optimization of Moringa oleifera seed and traditional chemical coagulants solutions for concrete plant wastewater treatment. J Clean Prod., (17)4: 123-132. https://doi.org/10.1016/j.jclepro.2017.10.311 DOI: https://doi.org/10.1016/j.jclepro.2017.10.311

Dhawi F., Datta R. and Ramakrishna W. (2017). Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Bba-Proteins Proteom., 1865(2): 243-251. https://doi.org/10.1016/j.bbapap.2016.11.015 DOI: https://doi.org/10.1016/j.bbapap.2016.11.015

Díaz J.J.F., BallutDajud G. and Miranda J. P. R. (2018). Influence of storage time of Moringa oleífera seed on the coagulant activity efficiency for raw water treatment. Indian Journal of Science and Technology., 8(1).

Foidl N., Makkar H.P.S. and Becker K.(2001).Potentiel de Moringa oleifera en agriculture et dans l’industrie. Potentiel de développement des produits de Moringa. Dar es-Salaam, Tanzanie, du 29 octobre au 2 Novembre 2001.

Formentini-Schmitt D.M., Fagundes-Klen M.R., Veit M.T, Palácio S. M., Trigueros D.E.G., Bergamasco R. and Mateus G.A.P. (2018). Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: application of the response surface methodology. Environ Technol., 1-10. https://doi.org/10.1080/09593330.2018.1440012 DOI: https://doi.org/10.1080/09593330.2018.1440012

Galloway L.F. (2001). The effect of maternal and paternal environments on seed characters in the herbaceous plant Campanula americana (Campanulaceae). Am J Bot., 88(5) : 832-840. https://doi.org/10.2307/2657035 DOI: https://doi.org/10.2307/2657035

Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y. and Pham-Thi A.T. (2004). Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot-London., 94(3): 345-351.https://doi.org/10.1093/aob/mch150 DOI: https://doi.org/10.1093/aob/mch150

Gomaa N.H. and Picó F. X. (2011). Seed germination, seedling traits, and seed bank of the tree Moringa peregrina (Moringaceae) in a hyper‐arid environment. Am J Bot., 98(6) : 1024-1030. https://doi.org/10.3732/ajb.1000051 DOI: https://doi.org/10.3732/ajb.1000051

Hassanein A.M.A. and Al-Soqeer A.A. (2017). Morphological and genetic diversity of Moringa oleifera and Moringa peregrina genotypes. Hortic Environ Biote., 1-11. https://doi.org/10.1007/s13580-018-0024-0 DOI: https://doi.org/10.1007/s13580-018-0024-0

Kwon S.H. and Torrie J.H. (1964). Heritability and interrelationship among traits of two soybean populations. Crop science.,4(2): 196-198. https://doi.org/10.2135/cropsci1964.0011183x000400020023x DOI: https://doi.org/10.2135/cropsci1964.0011183X000400020023x

Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J. and Bertoli S. (2015). Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci., 16(6) : 12791-12835. https://doi.org/10.3390/ijms17122141

Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J. and Bertoli S. (2016). Moringa oleifera seeds and oil: Characteristics and uses for human health. Int J MolSci., 17(12) : 2141. https://doi.org/10.3390/ijms17122141 DOI: https://doi.org/10.3390/ijms17122141

MarreroDelange D., Vicente Murillo R., Canavaciolo V.L.G. and Amaro J.G. (2014).Composición de ácidosgrasosdelaceite de las semillas de Moringa oleífera que crece en La Habana, Cuba. RevistaCubana de PlantasMedicinales., 19(2): 197-204. https://doi.org/10.3989/gya.1994.v45.i3.988 DOI: https://doi.org/10.3989/gya.1994.v45.i3.988

Mendieta-Araica B., Spörndly E., Reyes-Sánchez N., Salmerón-Miranda F. and Halling M. (2013). Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agroforest Syst., 87(1) : 81-92. https://doi.org/10.1007/s10457-012-9525-5 DOI: https://doi.org/10.1007/s10457-012-9525-5

Morton J.F. (1991). The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands?.Econ Bot., 45(3): 318-333. https://doi.org/10.1007/bf02887070 DOI: https://doi.org/10.1007/BF02887070

Ogunsina B.S., Indira T.N., Bhatnagar A.S., Radha C., Debnath S. and Krishna A.G. (2014). Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J Food Sci Techno., 51(3): 503-510. https://doi.org/10.1007/s13197-011-0519-5 DOI: https://doi.org/10.1007/s13197-011-0519-5

Olson M.E. and Carlquist S. (2001). Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). Bot J Linn Soc., 135(4): 315-348. https://doi.org/10.1111/j.1095-8339.2001.tb00786.x DOI: https://doi.org/10.1111/j.1095-8339.2001.tb00786.x

Osman H.E. and Abohassan A. A. (2012). Morphological and analytical characterization of Moringa peregrina populations in western Saudi Arabia. Int J TheorAppl Sci., 4(2) : 174-184.

Ouazine S., Belala H. and Hassissene N.E. (2017).Propriétés fonctionnelles de poudre de feuilles de Moringa oleifera.

Price M.L. (1985). The moringa tree. Educational Concerns for Hunger Organization (ECHO) Technical Note.

Rafiq C. M., Rafique M., Hussain A. and Altaf M. (2010). Studies on

heritability, correlation and path analysis in maize (Zea mays L.). J. Agric. Res., 48(1): 35-38.

Raja S., Bagle B.G. and More T.A. (2013). Drumstick (Moringa oleifera Lamk.) improvement for semiarid and arid ecosystem: Analysis of environmental stability for yield. J. Plant Breed. Crop Sci., 5: 164-170. https://doi.org/10.5897/jpbcs12.029 DOI: https://doi.org/10.5897/JPBCS12.029

Shahzad U., Khan M.A., Jaskani M.J., Khan I.A. and Korban S.S. (2013). Genetic diversity and population structure of Moringa oleifera. Conserv Genet., 14(6): 1161-1172.https://doi.org/10.1007/s10592-013-0503-x DOI: https://doi.org/10.1007/s10592-013-0503-x

Shi Y., Wang X. and Huang A. (2018). Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. a Lam. flower. Int J BiolMacromol., 115 : 883-890. https://doi.org/10.1016/j.ijbiomac.2018.04.109 DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.109

Teixeira E.M.B., Carvalho M.R.B., Neves V.A., Silva M.A. and Arantes-Pereira L. (2014). Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem., 147: 51-54. https://doi.org/10.1016/j.foodchem.2013.09.135 DOI: https://doi.org/10.1016/j.foodchem.2013.09.135

Thurber M.D. and Fahey J.W. (2009). Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of Innovations” theory. Ecol Food Nutr., 48(3): 212-225. https://doi.org/10.1080/03670240902794598 DOI: https://doi.org/10.1080/03670240902794598

Yang R.Y., Chang L.C., Hsu J.C., Weng B.B., Palada M.C., Chadha M. L. and Levasseur V. (2006). Nutritional and functional properties of Moringa leaves–From germplasm, to plant, to food, to health. Moringa leaves: Strategies, standards and markets for a better impact on nutrition in Africa. Moringanews, CDE, CTA, GFU. Paris.

Published

15-01-2020

How to Cite

Junior, A., Pierre Jonas Sanon, & Dominique Lordé. (2020). Phenotypic diversity of Haitian Benzolive (Moringa oleifera Lam.) . Plantae Scientia, 3(1), 1–6. https://doi.org/10.32439/ps.v3i1.1-6

Issue

Section

Research Articles